The Home page of ILPI's Safety Data Sheet (SDS) Resource, the leader in SDS information since 1995!
The history and philosophy behind this resource.
A curated collection of books and reference materials concerning Safety Data Sheets and closely related topics.
Paste your plain text SDS into the SDS-Demystifier, and it will be converted into a hypertext-enriched document with links to detailed explanations of each key term.
An extensive list of frequently asked questions about Safety Data Sheets including regulations, content, compliance, and more.
A humorous take on Safety Data Sheet jargon. Fill in the blanks on our entry form to generate a personalized Unsafety Data Sheet to share with your coworkers.
Since 1995, we've maintained this massive curated list of the best places to find Safety Data Sheets on the Internet.
You are here! Way more than a glossary, this hypertext-enhanced resource covers hundreds of SDS-related terms and expert knowledge. Each entry includes both the SDS relevance and links to additional authoritative resources.
Archived results of Safety Data Sheet related polls taken by some of our millions of site visitors
The OSHA regulations behind SDS regulations, including the inspection guidelines and over 400 official interpretations letters under the Hazard Communication Standard
Commercial suppliers of SDS authoring and management software as well as cloud compliance services.
Commercial companies that will create SDS's for your specific needs as well as SDS translation companies.
Safety signs, banners, and scoreboards? Get yours at Safety Emporium!
Aromatic
Definition
An aromatic molecule or compound is one that has special stability and properties due to a closed loop of electrons. Not all molecules with ring (loop) structures are aromatic. A general scientific definition can be found below. Aromatic molecules are sometimes referred to simply as aromatics. Molecules that are not aromatic are termed aliphatic.
If a molecule contains an aromatic sub-unit, this is often called an aryl group.
A prototypical aromatic compound is benzene, so a layperson might prefer to think of an aromatic compound as something that has a ring structure like that of benzene, C6H6. Shown here are 4 equivalent ways of representing the structural formula of benzene where C = a carbon atom, H = a hydrogen atom and a line is a chemical bond:
Additional Info
Maintain an inert atmosphere in your reactions with laboratory bubblers from Safety Emporium.
An introductory organic chemistry definition of an aromatic compound is one that has a planar ring with 4n + 2 pi-electrons where n is a non-negative integer (Hückel's Rule). For those with limited chemistry experience, in the drawings of benzene above there are six pi-electrons. If you look at the first or third drawing, the double lines (bonds) between carbon atoms each have 2 pi-electrons. There are 3 double bonds in these drawings, and therefore six pi-electrons. Systems with six pi-electrons in a planar ring are aromatic according to Hückel's Rule where n = 1, i.e. 4(1) + 2 = 6.
Aspiring chemists will note that our current discussion is omitting a feature of aromatic molecules called resonance that explains their chemical properties. For detailed information about the special chemical properties and chemistry of aromatic molecules, see the Further Reading links below.
The term "aromatic" was used by chemists to describe certain chemicals with peculiar odors long before anyone understood what atoms were or how they might be connected to form molecules. Many aromatic molecules such as benzene and those shown below have distinctive odors (aromas), but not all aromatic molecules have an odor. Can you apply Hückel's Rule to each one?
For comparison, here are some molecules with ring structures that are not aromatic because they do not meet Hückel's Rule which requires that they have 2 (n=0), 6 (n=1), 10 (n=2) or 14 (n=3) etc. pi-electrons in a ring. In this examples below, cyclohexene is not actually a planar molecule (although it may look it from the drawing), so it is not aromatic:
Aromatic molecules containing several fused (joined) rings are called polycylic aromatics or sometimes simply "polycyclics" for short. Those polycyclic aromatics made up only of carbon and hydrogen are called polycyclic aromatic hydrocarbons or PAH's. PAH's don't always appear to obey Hückel's Rule, but individual rings or groups of rings in the molecule can do do so and undergo reactivity consistent with aromaticity.
Many PAH's are extremely potent carcinogens or mutagens. For example, the molecule shown on the right, benzo[a]pyrene is an exceedingly potent carcinogen found commonly in coal tar and soot, including tobacco smoke and diesel exhaust (both of which are listed by IARC as "carcinogenic to humans"). While individual PAH's are just one component in these mixtures, consider that smoking contributes to 80 to 90% of all lung cancer deaths with diesel exhaust estimated to cause about 6%, and secondhand smoke about 5%. Exposure to radon is attributed to about 10% of lung cancer deaths and occupational exposure to other carcinogens is from 9 to 15%. The total of these exceeds 100% because multiple exposures can be assigned in many cases (for example, a smoker in a house with high radon concentration). PAH's can also cause other cancers through skin contact and ingestion and can have reproductive as well as possibly teratogenic effects.
SDS Relevance
A compound that has an odor is not necessarily aromatic. Likewise, not all aromatic molecules have an odor. When the term aromatic is used on a Safety Data Sheet it is referring to the chemical definition of aromaticity, not the smell or odor of the compound.
Disclaimer: The information contained herein is believed to be true and accurate, however ILPI makes no guarantees concerning the veracity of any statement. Use of any information on this page is at the reader's own risk. ILPI strongly encourages the reader to consult the appropriate local, state and federal agencies concerning the matters discussed herein.